




# **Getting Started with Slwave: A PCB Model**



ANSYS, Inc. Southpointe 2600 Ansys Drive Canonsburg, PA 15317 ansysinfo@ansys.com https://www.ansys.com (T) 724-746-3304 (F) 724-514-9494

Release 2022 R2 July 2022

ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001:2015 companies.

#### **Copyright and Trademark Information**

© 2002-2022 ANSYS, Inc. Unauthorized use, distribution or duplication is prohibited.

ANSYS, Ansys Workbench, AUTODYN, CFX, FLUENT and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries located in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. All other brand, product, service and feature names or trademarks are the property of their respective owners. FLEXIm and FLEXnet are trademarks of Flexera Software LLC.

#### **Disclaimer Notice**

THIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFIDENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS. The software products and documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions. The software products and documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.

ANSYS, Inc. and ANSYS Europe, Ltd. are UL registered ISO 9001: 2015 companies.

#### **U.S. Government Rights**

For U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).

#### **Third-Party Software**

See the legal information in the product help files for the complete Legal Notice for Ansys proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.

#### Conventions Used in this Guide

Please take a moment to review how instructions and other useful information are presented in this documentation.

- Procedures are presented as numbered lists. A single bullet indicates that the procedure has only one step.
- Command font is used for:
  - Command line prompts that should be typed exactly as written.
  - Script examples.
- Bold type is used for the following:
  - Names of windows, workspaces, menu commands, and options.
    - Menu commands are often separated by angle brackets. For example, **File > Open**.
  - Labeled keys on the computer keyboard. For example, Enter.
- Italic type is used for the following:
  - Emphasis.
  - Publication titles.
- The plus sign (+) is used between keyboard keys to indicate that you should press the keys at the same time. For example, "Press Shift+F1" means to press the Shift key and, while holding it down, press the F1 key also. You should always depress the modifier key or keys first (for example, Shift, Ctrl, Alt, or Ctrl+Shift), continue to hold it/them down, and then press the last key in the instruction.

#### **Getting Help: Ansys Technical Support**

For information about Ansys Technical Support, go to the Ansys corporate Support website, <u>http://www.ansys.com/Support</u>. You can also contact your Ansys account manager in order to obtain this information.

All Ansys software files are ASCII text and can be sent conveniently by e-mail. When reporting difficulties, it is extremely helpful to include very specific information about what steps were taken or what stages the simulation reached, including software files as applicable. This allows more rapid and effective debugging.

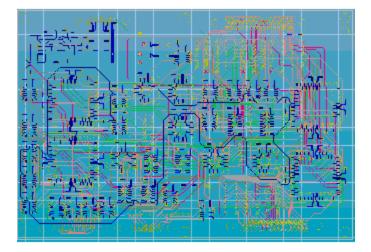
# **Table of Contents**

| Table of Contents                              | Contents-1 |
|------------------------------------------------|------------|
| 1 - Introduction                               | 1-1        |
| The PCB Model                                  | 1-1        |
| Expected Results                               | 1-2        |
| 2 - Setting Up the Design                      | 2-1        |
| Importing and Saving the Project               | 2-1        |
| Setting PCB Element Visibility                 |            |
| Viewing the Layers Workspace and Layer Stackup | 2-5        |
| Viewing the Layer Stackup                      | 2-6        |
| Identifying Power and Ground Nets              | 2-7        |
| Running a Validation Check                     | 2-8        |
| 3 - Resonant Modes Analysis                    |            |
| Running the Resonant Modes Analysis            | 3-1        |
| Viewing Resonant Modes Analysis Results        | 3-2        |
| 4 - Slwave SYZ Analysis                        | 4-1        |
| Defining Pin Groups for GND and VCC            | 4-1        |
| Defining a Port Between Pin Groups             |            |
| Generating SYZ Parameters                      | 4-5        |
| Viewing Impedance Response                     | 4-8        |
| 5 - PSI SYZ Analysis                           | 5-1        |
| Generating SYZ Parameters using PSI            | 5-1        |
| Viewing Impedance Response                     | 5-5        |
| 6 - PSI AC Current Analysis                    | 6-1        |
| Creating a Voltage Source                      | 6-1        |
| Calculating AC Currents                        | 6-3        |
| Viewing AC Currents as 2D Plots                | 6-5        |

Contents-1

| Exporting Total Radiated Power           | 6-6 |
|------------------------------------------|-----|
| 7 - Frequency Sweep of Voltages          | 7-1 |
| Disabling Voltage Sources                | 7-1 |
| Creating a Current Source on a Component | 7-1 |
| Creating a Voltage Probe                 | 7-4 |
| Running a Frequency Sweep                | 7-6 |
| Plotting Probe Voltage                   | 7-7 |

# 1 - Introduction


This Getting Started Guide is intended to quickly familiarize you with the capabilities of Slwave. This guide leads you step-by-step through importing a PCB design, setting up and performing three Slwave analyses, and viewing the results of the simulations.

This guide explains how to perform the following tasks in Slwave:

- Importing a geometric PCB model
- Validating the design
- Running three Slwave simulations:
  - Resonant Modes Analysis
  - SYZ Analysis
  - PSI SYZ Analysis
  - AC Current Analysis
  - Frequency Sweep of Voltages
- Adding ports, sources, and probes to the PCB as appropriate for each analysis
- Specifying parameter settings for each type of analysis
- Creating 2D plots of the results, and comparing the results from the three solutions

## **The PCB Model**

The PCB model used in this Getting Started Guide consists of an 8-layer PCB. Layers 2 and 7 are planes for power and ground.



Introduction 1-1 Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

## **Expected Results**

The analyses will demonstrate how frequency-dependent impedance and voltage differences between the power and ground planes can cause signal integrity issues such as voltage ripple. The resonant modes identified in the Resonant Modes Analysis can be clearly seen in the impedance plots from the SYZ Analysis and the graphs of voltage swings from the Frequency Sweep.

# 2 - Setting Up the Design

This section explains how to perform the following tasks:

- Importing and saving a project
- Setting the visibility of geometric and circuit elements
- Viewing the Layers workspace and layer stackup
- Identifying power/ground nets
- Running a validation check on the design

## Importing and Saving the Project

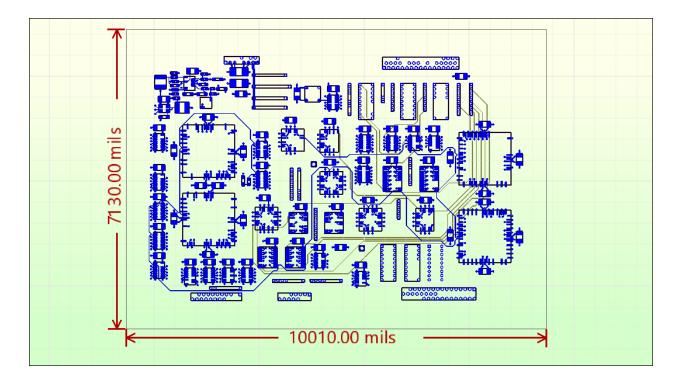
To begin, import the PCB design and its components from an Ansys Neutral File (\*.anf). This file contains information about the PCB's geometry, layer stackup, padstacks, vias, materials, and discrete components.

- 1. Launch Slwave.
- 2. If the Welcome to Slwave window opens at launch, close it.
- 3. Click the Import tab.
- 4. In the Ansys EDA Layouts area, click ANF.

The Select Ansoft Neutral File to Import window appears.

- 5. Depending on your operating system, navigate to one of the following locations:
  - Windows: \Program Files\AnsysEM\v222\Win64\Examples\Slwave
  - Linux: /Program Files/AnsysEM/v222/Linx64/Examples/Slwave
- 6. Select the file **siwave\_board.anf**.
- 7. Click Open.

The Select nets to import from siwave\_board window appears.


| ad Net Configuration File |                      |                   | Browse             | Load |
|---------------------------|----------------------|-------------------|--------------------|------|
| Net Name                  | Import               | Setup Ports       | Port Reference Net |      |
| ABC                       | $\checkmark$         |                   | GND                |      |
| BLT_DATA_P1               | $\checkmark$         |                   | GND                |      |
| BLT_DATA_P2               | $\checkmark$         |                   | GND                |      |
| BLT_DATA_P3               | $\checkmark$         |                   | GND                |      |
| BLT_DATA_P4               | $\checkmark$         |                   | GND                |      |
| BLT_DATA_R1               | $\checkmark$         |                   | GND                |      |
| BLT_DATA_R2               | $\checkmark$         |                   | GND                |      |
| BLT_DATA_R3               |                      |                   | GND                |      |
| BLT_DATA_R4               |                      |                   | GND                |      |
| CLK_1K                    |                      |                   | GND                |      |
| CLK_125K                  |                      |                   | GND                |      |
| CLK_156K                  |                      |                   | GND                |      |
| CLK_312K<br>CMD_EXECUTE   |                      |                   | GND                |      |
|                           | o Import: 308        |                   | GND                |      |
| ld card: Se               | ect Matching Rows De | select Matching R | ows                |      |
| Operations                |                      |                   |                    |      |
| Import? Yes V Update      |                      |                   |                    |      |
| Setup Ports? Yes V Update | Port Reference Na    | st: GND           | V Upda             | ate  |

8. Leave the settings as-is, and click **Import Configuration**.

If a Component Import Overwrite message appears, click **Yes to All** to overwrite any existing names.

If the Slwave Workflow Wizard opens, close it to reveal the Modeling workspace.

The design should look like this:



| Note:                                      |                                                     |
|--------------------------------------------|-----------------------------------------------------|
| You can change S                           | Iwave's background colors from the <b>View</b> tab: |
| Selection Color<br>Background<br>Stighting |                                                     |

9. Click File > Save As.

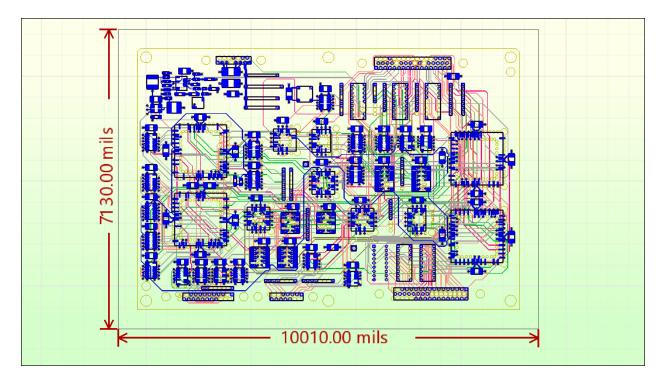
The Save As window appears.

- 10. Browse to a directory where you have write permission. Enter a name for this project, such as **siwave\_board\_test1.siw**.
- 11. Click Save.

# **Setting PCB Element Visibility**

PCB element visibility is controlled from the Layers workspace and the View tab.

To turn on visibility for geometric elements (planes, traces, pads, vias, and circuit elements):


Setting Up the Design 2-3

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

- 1. Navigate to the Layers workspace.
- Use the Show All check boxes (■) to enable visibility for all parts on every layer.
   When you are finished, the Layers workspace should look like the following:

| Layers      |       |   |              |              |              |              | <b>–</b> 1   | ч× |
|-------------|-------|---|--------------|--------------|--------------|--------------|--------------|----|
| Show Dielec | trics |   |              |              |              |              |              |    |
|             |       | × | 0            | 00           | ۲            | ۵            | Ť            |    |
| SURFACE     |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| OL2         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| OL3         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| OL4         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| OL5         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| ○ L6        |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| OL7         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
| OBASE       |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |    |
|             |       |   |              |              |              |              |              |    |
|             |       |   |              |              |              |              |              |    |
|             |       |   |              |              |              |              |              |    |

The **Modeling** workspace should look like the following:



Setting Up the Design 2-4

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

#### Note:

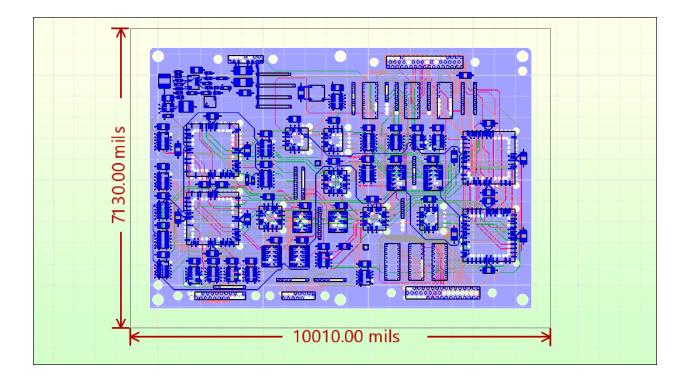
While no further changes are necessary for this Getting Started Guide, additional visibility options are described in Slwave's online help.

## Viewing the Layers Workspace and Layer Stackup

The **Layers** workspace and the **Layer Stackup Editor** control the visibility and properties of the package layers.

Layers can be viewed in either outline or filled mode.

To set the layers for this project to filled mode:


- 1. Navigate to the Layers workspace.
- 2. Click within the colored rectangles to change layers from outline to solid fill:
  - Set Surface, L7, and BASE to solid fill.
  - Leave the remaining layers as outlines.

The Layers workspace should look like the following:

| Layers      |       |   |              |              |              | ,            | •            | Ŧ | × |
|-------------|-------|---|--------------|--------------|--------------|--------------|--------------|---|---|
| Show Dielec | trics |   |              |              |              |              |              |   |   |
|             |       | × | 0            | 00           | ۲            | ۵            | Ť            |   |   |
| SURFACE     |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| OL2         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| OL3         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| OL4         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| OL5         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| ○ L6        |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| OL7         |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
| BASE        |       | X | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |   |   |
|             |       |   |              |              |              |              |              |   |   |
|             |       |   |              |              |              |              |              |   |   |
|             |       |   |              |              |              |              |              |   |   |

The Modeling workspace should look like the following:

Setting Up the Design 2-5



## Viewing the Layer Stackup

To view the layer stack:

- 1. Navigate to the **Home** tab.

The Layer Stackup Editor appears.

| Color | Name              | Туре       | 🔶 🕂 Th    | ickness (mils) | Aterial Material | Conductivity (S/m) | Ca Dielectric Fill | Dielectric constant   | Loss tangent | Translucency | Elevation (mils) | Roughness (mils)      | Trace Cross-section |    |
|-------|-------------------|------------|-----------|----------------|------------------|--------------------|--------------------|-----------------------|--------------|--------------|------------------|-----------------------|---------------------|----|
|       | UNNAMED_1         | DIELECTRIC | 0         |                | air              | 0                  |                    | 1.0006                | 0            |              | 52.08            |                       |                     |    |
|       | SURFACE           | METAL      | 0.72      |                | copper           | 5.8E+07            | air                | 1.0006                | 0            | 0            | 51.36            | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           | 1  |
|       | UNNAMED_3         | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 45.36            |                       |                     |    |
|       | L2                | METAL      | 1.44      |                | copper           | 5.8E+07            | FR4_epoxy          | 4.4                   | 0.02         | 0            | 43.92            | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           | 1  |
|       | UNNAMED_5         | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 37.92            |                       |                     |    |
|       | L3                | METAL      | 1.44      |                | copper           | 5.8E+07            | FR4_epoxy          | 4.4                   | 0.02         | 0            | 36.48            | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           |    |
|       | UNNAMED_7         | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 30.48            |                       |                     |    |
|       | L4                | METAL      | 1.44      |                | copper           | 5.8E+07            | FR4_epoxy          | 4.4                   | 0.02         | 0            | 29.04            | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           |    |
|       | UNNAMED_9         | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 23.04            |                       |                     |    |
|       | L5                | METAL      | 1.44      |                | copper           | 5.8E+07            | FR4_epoxy          | 4.4                   | 0.02         | 0            | 21.6             | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           | 1  |
|       | UNNAMED_11        | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 15.6             |                       |                     |    |
|       | L6                | METAL      | 1.44      |                | copper           | 5.8E+07            | FR4_epoxy          | 4.4                   | 0.02         | 0            | 14.16            | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           | 1  |
|       | UNNAMED_13        | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 8.16             |                       |                     |    |
|       | L7                | METAL      | 1.44      |                | copper           | 5.8E+07            | FR4_epoxy          | 4.4                   | 0.02         | 0            | 6.72             | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           | _  |
|       | UNNAMED_15        | DIELECTRIC | 6         |                | FR4_epoxy        | 0                  |                    | 4.4                   | 0.02         |              | 0.72             |                       |                     | ١, |
|       | BASE              | METAL      | 0.72      |                | copper           | 5.8E+07            | air                | 1.0006                | 0            | 0            | 0                | HJ: 0 , HJ: 0 , HJ: 0 | Rectangle           | _  |
|       | ete / Move Layer  | (s) E      | dit Selec | ted Layer(s)   |                  |                    |                    |                       | -            |              |                  |                       |                     |    |
| Add A | Above Selected L  | ayer       | Color     | 0000ff         |                  | Update             | Dielectric Fill    | air                   | ~            | Update       |                  |                       |                     |    |
| Add I | Below Selected La |            |           |                |                  |                    |                    | •                     |              |              |                  |                       | 1                   |    |
| Del   | ete Selected Lav  | erc N      | lame      | SURFACE        |                  | Update             | Translucency       |                       | 0%           | Update       |                  |                       |                     |    |
|       |                   |            | ype       | METAL          | ~                | Update             | Thickness          | 0.72                  | mils         | Update       | 10000            | 10000                 | <b>\$</b>           |    |
| Move  | e Selected Layers | s Up       | Abc.      |                |                  |                    |                    |                       |              |              |                  | -                     |                     |    |
| Move  | Selected Layers I | Down N     | 1aterial  | copper         | ~                | Update             | Roughness          | HJ: 0 , HJ: 0 , HJ: 0 | ) mils       | Update       |                  |                       |                     |    |

Setting Up the Design 2-6

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

3. Here, you can change the properties for one or more layers. For now, you need only be aware that this window exists. Later, this guide will focus on the interactions between layers L2 and L7.

## **Identifying Power and Ground Nets**

In this section, you will explore the **Nets** workspace.

#### Note:

By default, the **Nets** workspace is located on the upper-left side of the Slwave window. Workspaces can be moved by dragging and dropping them to another location.

Before performing any simulations, power and ground nets in the design must be identified.

Nets containing large planes must be classified as Power/Ground nets. Signal nets containing microstrip and stripline routing need to be classified as Non Power/Ground nets. This enables the solver to judiciously choose the mesh refinement and optimization strategies for the signal and power/ground nets.

To identify power/ground nets:

1. In the **Nets** workspace, which defaults to **Single Ended Nets**, select the **Power/Ground Identification** tab.

| Power/Ground Identification 👻                    | Ψ×    |
|--------------------------------------------------|-------|
| Regular Exp:                                     |       |
| Non Power/Ground Nets                            |       |
| ABC<br>BLT_DATA_P1<br>BLT_DATA_P2<br>BLT_DATA_P3 | <     |
| Power/Ground Nets                                |       |
| GND<br>P28VA<br>VCC                              |       |
| Auto Identify                                    |       |
| 🕂 Single 🛟 Differe 🗧 Extend 🛬 Pov                | wer// |

Setting Up the Design 2-7

2. Click Auto Identify to have Slwave automatically classify the power and ground nets.

| Power/Ground Identification $\bullet$ # ×   |
|---------------------------------------------|
| Regular Exp:                                |
| Non Power/Ground Nets                       |
| ABC  BLT_DATA_P1 BLT_DATA_P2 BLT_DATA_P3  V |
| Power/Ground Nets                           |
| GND<br>P28VA<br>VCC                         |
| Auto Identify                               |
| Fomeren Conteren Power/                     |

Nets GND, P28VA, and VCC should be classified as Power/Ground Nets.

3. If any net is incorrectly identified, click to highlight the net name and use the up and down arrows to move it to the correct list.

# **Running a Validation Check**

Run a validation check of the PCB design before running any simulations. This check identifies several common layout and design errors.

1. Click Tools. In the Inspection Tools area, click Validation Check.

The Launch Validation Check window appears.

Setting Up the Design 2-8

| Launch Validation Check               | ×                                                                                           |
|---------------------------------------|---------------------------------------------------------------------------------------------|
| Check List<br>Select All Unselect All | Select a simulation mode No Associated Simulation                                           |
| Self-Intersecting Polygons            | Strict Disjoint Net Checking                                                                |
| Disjoint Nets (Floating Nodes)        | Minimum Area: 3100.01 mils^2                                                                |
| DC-Short Errors                       | Cutouts that are smaller than this minimum area<br>will be ignored during validation check. |
| Identical/Overlapping Vias            | This threshold can be changed in the                                                        |
| Bondwire Collisions                   | Simulation -> Global Option window.                                                         |
| Illegal Bondwire Connections          | Nets to be checked                                                                          |
| Misalignments                         | Some nets might not be included.<br>Please refer the Simulation -> Global Option            |
| Less Than Two Terminals               | window.                                                                                     |
|                                       | Number of cores to use: 4                                                                   |
| ОК                                    | Cancel                                                                                      |

2. Leave the default settings, and click **OK** to start the check.

The **Messages** window updates with a **Process Monitor** showing the status of the validation check.

| Process Monitor (Validation Checker)                                                                                       | <b>→</b> ∓ × |
|----------------------------------------------------------------------------------------------------------------------------|--------------|
| Display: Messages 👻 🖬 🕨                                                                                                    |              |
| Checking Disjoint Net: TCI4_LS<br>Checking Disjoint Net: TCI4_DIG3_PR_SWITCH<br>Checking Disjoint Net: TCI4_DIG3_ON_SWITCH | ^            |
| Checking Disjoint Net: TCI4_DIG3_ON                                                                                        | ~            |
| <                                                                                                                          | >            |
| Progress: 09%                                                                                                              |              |
| Messages Process Monitor (Validation Checker)                                                                              |              |

When the process is finished, the Validation Check Results window appears.

Setting Up the Design 2-9

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

| Validation Check Results                     | ×        |
|----------------------------------------------|----------|
| Errors                                       |          |
| Self-Intersecting Polygons: 0                | Auto Fix |
| Point-Connections:                           |          |
| Disjoint Nets: 0                             | Auto Fix |
| DC-shorted Errors: 0                         | Auto Fix |
| Identical/Overlapping Vias: 0                | Auto Fix |
| Traces-Inside-Traces Errors: 0               | Auto Fix |
| Collisions of Bondwires: 0                   |          |
| Illegal Connections of Bondwires: 0          |          |
| Identical Bondwires: 0                       | Auto Fix |
| Reversed Bondwires: 0                        | Auto Fix |
| Floating Nodes: 0                            | Auto Fix |
| Zero Via Plating: 0                          |          |
| Nets With Less Than 2 Terminals: 0           |          |
| Warnings                                     |          |
| Misalignments (Planes/Traces/Vias): 0        | Auto Fix |
| Bondwires Misaligned With Die Pads: 0        | Auto Fix |
| Pins Shared By Multiple Pin Groups: 0        |          |
| Self-Intersection Warnings: 0                |          |
| Components With Pins From Multiple Layers: 0 | Auto Fix |
| OK                                           | Cancel   |
| UK                                           | Cancel   |

If there were errors or warnings that Slwave could resolve, the **Auto Fix** check boxes would be available.

This design shows no errors, and is ready for simulation.

- 3. Click **OK** to close the window.
- 4. Click **FILE > Save** to save the updated PCB design.

Setting Up the Design 2-10

# **3 - Resonant Modes Analysis**

This section explains how to perform the following tasks:

- Running a Resonant Modes analysis
- Viewing the results as a data table or as 2D plots

### **Running the Resonant Modes Analysis**

Traces routed through power and ground planes can exhibit signal integrity problems. The resonant mode calculation is the first step in identifying non-ideal plane behavior that can affect signal integrity.

Set up an Slwave Resonant Modes analysis:

1. Click Simulation > Compute Resonant Modes.

The Compute Resonant Modes window appears.

- 2. Verify that **Minimum Frequency** is set to 2.55238E+08. If it is not, click **Restore Recommended Minimum Frequency**.
- 3. Set the Maximum Frequency to 2e9 (2 GHz).
- 4. Set the # of Modes to compute to 10.

| Compute Resonant Modes                | × |
|---------------------------------------|---|
| Simulation name:                      |   |
| Resonant Mode Sim 1                   | - |
| Find Modes in Frequency Range         |   |
| Minimum Frequency: 2.55238E+08 Hz     |   |
| Restore Recommended Minimum Frequency |   |
| Maximum Frequency: 2e9 Hz             |   |
| # of Modes to Compute: 10             |   |
| Other solver options                  |   |
| Save Settings Launch Close            |   |

Resonant Modes Analysis 3-1

5. Click Launch to begin the analysis.

The **Messages** workspace updates with a progress bar.

When the analysis has finished, it appears in the **Results** workspace:

| Results        | • | д | × |
|----------------|---|---|---|
| Resonant Modes |   |   |   |

### **Viewing Resonant Modes Analysis Results**

After the analysis has finished, Resonant Modes results can be viewed in a table, or as twodimensional plots overlaid on the PCB design.

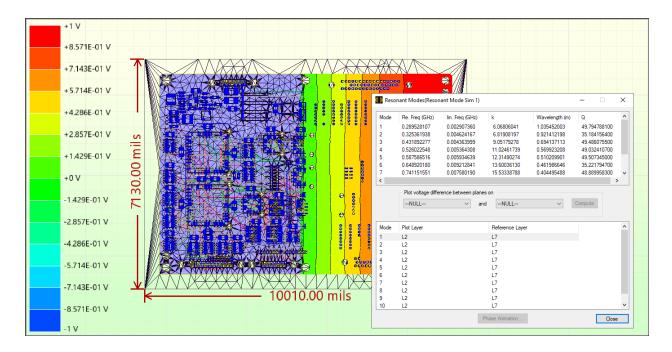
To view tabular results:

1. In the **Results** workspace, double-click **Resonant Mode Sim 1** (or whatever you've named the simulation).

The Resonant Modes window appears.

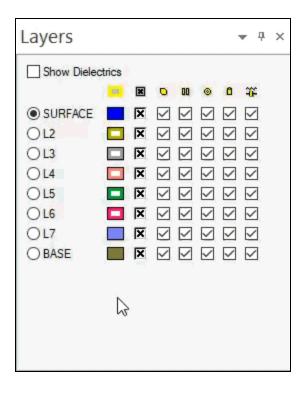
Resonant Modes Analysis 3-2

| -    | nant Modes(Reson | ant Mode Sim 1) |                 |                | _ 🗆         | ×   |
|------|------------------|-----------------|-----------------|----------------|-------------|-----|
| Mode | Re. Freq (GHz)   | Im. Freq (GHz)  | k               | Wavelength (m) | Q           | 1   |
| 1    | 0.289528107      | 0.002907360     | 6.06806041      | 1.035452003    | 49.79478810 | 0   |
| 2    | 0.325361938      | 0.004624167     | 6.81908197      | 0.921412198    | 35.18415640 | 0   |
| 3    | 0.431892277      | 0.004363999     | 9.05179278      | 0.694137113    | 49.48607550 | 0   |
| 4    | 0.526022548      | 0.005364308     | 11.02461739     | 0.569923208    | 49.03241070 | 0   |
| 5    | 0.587586516      | 0.005934639     | 12.31490274     | 0.510209901    | 49.50734500 | 0   |
| 6    | 0.648920180      | 0.009212841     | 13.60036130     | 0.461986646    | 35.22179470 | 0   |
| 7    | 0.741151551      | 0.007580190     | 15.53338788     | 0.404495488    | 48.88995830 | 0 . |
| C    |                  |                 |                 |                |             | >   |
|      |                  |                 |                 |                |             |     |
|      | DL + L           |                 | Reference Layer |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |
| Mode | Plot Layer       |                 |                 |                |             |     |

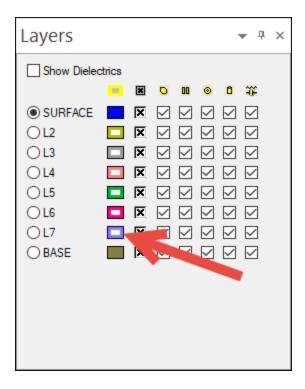

At the center of this window, two drop-down menus allow you to compute the voltage differences between two planes.

Perform the following steps to plot the voltage differences between layers L2 and L7, the power and ground planes:

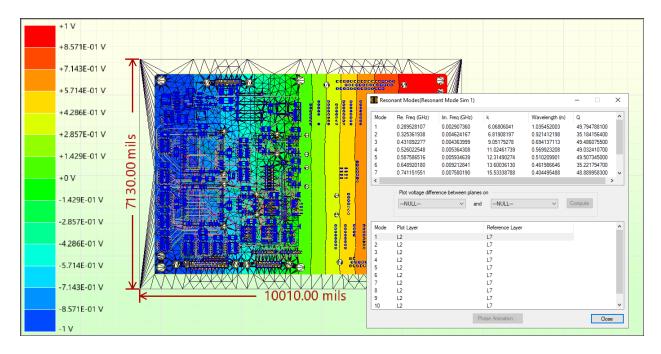
- 1. Use the drop-down menus under **Plot voltage difference between planes on** to select **L2** and **L7** respectively.
- 2. Click **Compute** to generate the 2D plot data from the solution data.


The lower part of the window updates to display the modes available for plotting. There are ten modes, and the underlying Modeling workspace updates to display Mode 1.

Resonant Modes Analysis 3-3




You'll notice that layer L7's display mode obscures part of the plot.


3. From the Layers workspace, click the solid color block next to L7 to revert it to outline mode.



Resonant Modes Analysis 3-4



The entire plot is now visible:



4. Click on each row in turn to see the voltage difference as a color map on the PCB. As indicated on the left, areas with large positive voltages appear as red, while areas with large negative voltages appear as blue.

Resonant Modes Analysis 3-5

5. To view the modes in sequential animation, click **Phase Animation**.

The **Phase Animation** window appears.

| Phase Animation                                                                                                                                                                        |                   | _ | × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|---|
| Re. Freq: 0.289528       (Gi         Im. Freq: 0.00290736       (Gi         Start       0       degre         End Angle:       360       degre         Step Size:       20       degre | iz)<br>ees<br>ees |   |   |
| Total number of frames: 18                                                                                                                                                             |                   |   |   |
| Generate Frames                                                                                                                                                                        | 1                 |   |   |
| Evport Close                                                                                                                                                                           |                   |   |   |
| Export Close                                                                                                                                                                           |                   |   |   |

6. Leave the **Start**, **End Angle**, and **Step Size** settings as their defaults, and click **Generate Frames**.

The **Frames** area updates with a list.

|          | Phase =    |          |
|----------|------------|----------|
| Frame 1; | Phase =    | 20.00    |
| Frame 2; | Phase =    | 40.00    |
| Frame 3; | Phase =    | 60.00    |
|          | Phase =    |          |
|          | ); Phase = |          |
|          | 1; Phase = |          |
|          | 2; Phase = |          |
|          | 3; Phase = |          |
|          | 1; Phase = |          |
|          | 5; Phase = |          |
|          | 5; Phase = |          |
|          | 7; Phase = |          |
| Frame 18 | 3; Phase = | = 360.00 |

Resonant Modes Analysis 3-6

- 7. Click through the frames one by one to change the underlying Modeling workspace to that frame, or use the **Play** and **Pause** buttons to control an animation of the frames.
- 8. Click **Close** to terminate the animation.
- 9. Click **Close** again to close the **Results** window.
- 10. Click **File > Save** to save the design with your Resonant Modes analysis results.

Resonant Modes Analysis 3-7

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.

PDF layout 3-8

# 4 - Slwave SYZ Analysis

This section explains how to perform the following tasks:

- Defining pin groups
- Defining a port between the pin groups
- · Generating the SYZ-parameters for selected power supply nets
- Viewing the frequency-dependent impedance of the planes on an X-Y plot

## **Defining Pin Groups for GND and VCC**

To launch the Pin Group Manager:

1. Click Tools > Create/Manage Pin Groups.

The Create/Manage Pin Groups window appears.

| Create/Manage Pin Groups                                                                                                                                                                                               | ×                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Create/Manage Pin Groups  Part Name:  Reference Designator:  Nets List common nets only Show Pin Numbers Show Pin Names  Net Selection Select all nets Unselect all nets Unselect all nets Hide All Nets Hide All Nets | Create Pin Group(s) Naming Convention                                        |
|                                                                                                                                                                                                                        | Delete Pin Group(s)     Create Port       Edit Pin Group     Create Terminal |
|                                                                                                                                                                                                                        | Close                                                                        |

Define a pin group for the **GND** net:

Slwave SYZ Analysis 4-1

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

- 1. From the **Part Name** menu, select **MACH230\_SMSOCKETAMD**.
- 2. From the Reference Designator list, select U41.
- 3. In the **Nets** list, ensure that the check box next to **GND** is selected, and that no other nets are selected.
- 4. Click Create Pin Group(s).

The Pin Group appears in the Pin Group List.

Define a pin group for the **VCC** net:

- 1. In the **Nets** list, deselect the check box next to **GND** and select the check box next to **VCC**. Ensure that no other check boxes are selected.
- 2. Click Create Pin Group(s).

Both the GND and VCC pin groups should now appear in the Pin Group List.

| Create/Manage Pin Groups                              | ×                                     |
|-------------------------------------------------------|---------------------------------------|
| Part Name:                                            | Options                               |
| MACH230_SMSOCKETAMD V                                 | Create pin groups for each part       |
|                                                       | Create pin groups for each net        |
| Reference Designator:                                 | Create pin groups per grid cell       |
| U14<br>U22                                            | Row # Col #                           |
| 022                                                   |                                       |
| U41                                                   | Synchronize grid lines' movement      |
|                                                       | Delete existing pin groups            |
| No. 4                                                 | Pin Group List                        |
| Nets                                                  | U41_GND_Group                         |
| List common nets only Show Pin Numbers Show Pin Names | U41_VCC_Group                         |
| GND                                                   |                                       |
| ✓ vcc                                                 |                                       |
| CLK_1K Select all nets                                |                                       |
| CLK_125K<br>Unselect all nets                         |                                       |
| FORCEOFF                                              |                                       |
|                                                       |                                       |
|                                                       |                                       |
| HLC_ERR ONet Visibility                               |                                       |
| HLC_ISOLATE Show All Nets                             |                                       |
|                                                       | Create Pin Group(s) Naming Convention |
| HLC_RRC_RDY Hide All Nets                             |                                       |
| HLC_RRC_RESET                                         | Delete Pin Group(s) Create Port       |
|                                                       |                                       |
|                                                       | Edit Pin Group Create Terminal        |
|                                                       | Close                                 |

3. Click Close.

# **Defining a Port Between Pin Groups**

Define a port on component U41.

- Click Tools > Generate Circuit Element on Components. The Circuit Element Generation Dialog appears.
- 2. In the **Positive Terminal Component** section, use the **Part Name** drop-down menu to select **MACH230\_SMSOCKETAMD** and the **Ref Des** drop-down menu to select **U41**.
- 3. In the **Reference Terminal Component** section, enable the **Same as Positive Terminal** check box, which will populate the Reference Terminal Component fields with the same information.
- 4. In the **Circuit Element Positive Terminal** section, expand the **Pin Groups** list and select the **U41\_VCC\_Group** pin group.
- 5. In the **Circuit Element Reference Terminal** section, expand the **Pin Groups** list and select the **U41\_GND\_Group** pin group.
- In the Circuit Element Type section, select the Port radio button.
   Your selections should look like the following:

| Circuit Elen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nent Generation Dialog                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                         |                                                                                                                    | -  |      | ×      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------|----|------|--------|
| Positive Termin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nal Component                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference T                                                                 | erminal Comp            | onent                                                                                                              |    |      |        |
| Part Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MACH230_SMSOCKETAMD                                                                                                                                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Part Name:                                                                  | MACH230_9               | SMSOCKETAMD                                                                                                        |    |      | $\sim$ |
| Ref Des:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U41                                                                                                                                                                    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ref Des:                                                                    | U41                     |                                                                                                                    |    |      | $\sim$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Same as I                                                                   | Positive Termi          | inal                                                                                                               |    |      |        |
| Circuit Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Positive Terminal                                                                                                                                                    | Circuit Element Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Terminal                                                                    |                         | Circuit Elements                                                                                                   |    |      |        |
| CLK_1K     CLK_1K     CLK_1Z     FORCEC     GND     HLC_AN     HLC_CT     HLC_CT     HLC_ER     HLC_CR     HLC_CR     HLC_RR     HLC_RR     HLC_RR     HLC_RR     HLC_RR     HLC_ST     HLC_ST     HLC_ST     HLC_ST     TC11_DI     TC11_PC     TC11_PC     TC12_DI     TC12_DI | 141_GND_Group<br>141_VCC_Group<br>55K<br>OFF<br>VAILABLE<br>OMPLETE<br>TL<br>RR<br>OLATE<br>DADSHED<br>RC_RDY<br>RC_RESET<br>5T_N<br>HIFT<br>FART<br>TOP<br>5<br>N_PRI | Pin Groups Pin Group State Pin Gro | Find Pin at Lo<br>ference pin<br>reference distar<br>O Current<br>O Voltage | ice<br>Source<br>Source | Capacitors<br>Current Sources<br>Inductors<br>Resistors<br>Ports<br>Voltage Probes<br>Voltage Sources<br>Terminals |    | Edit |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                             |                         |                                                                                                                    |    |      |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                        | Naming Convention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Create                                                                      |                         |                                                                                                                    | ОК | Car  | ncel   |

7. Click Create.

The Port Properties window appears.

Slwave SYZ Analysis 4-4

| Port Properties           |                     | $\times$ |
|---------------------------|---------------------|----------|
|                           |                     |          |
| Name:                     | U41_VCC             |          |
| Reference Impedance:      | 1  Ohms             |          |
| Positive Terminal Net: V0 | 00                  |          |
| Negative Terminal Net: 6  | âND                 |          |
| Positive Terminal Pingrou | ip: U41_VCC_Group   |          |
| Reference Terminal Ping   | roup: U41_GND_Group |          |
| ОК                        | Cancel              |          |

- 8. Shorten the name to **U41\_VCC**.
- 9. Set the **Reference Impedance** to **1** Ohm.
- 10. Click **OK** to accept the port definition.
- 11. Click **OK** to exit the **Circuit Element Generation** window.

### **Generating SYZ Parameters**

Next, we calculate the frequency-dependent impedance response at port U41\_VCC.

The active components on the PCB draw current through the power supply nets, such as VCC. If the impedance of the VCC net is too large, ripple voltage may be induced between VCC and GND when the components switch. The frequencies previously identified by the Resonant Modes Analysis correspond to peaks in the impedance of the power supply VCC net.

1. Select the Simulation tab. In the Slwave area, click Compute SYZ Parameters.

#### Note:

Ensure you are in the correct area of the **Simulation** tab, as there is another **Compute SYZ Parameters** link for PSI.

The **Compute SYZ-parameters** window appears, populated with default settings.

Slwave SYZ Analysis 4-5

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

| Compute SYZ-p  | aramet   | ers               |           |                         |          |                                         | ×        |
|----------------|----------|-------------------|-----------|-------------------------|----------|-----------------------------------------|----------|
| Sweep Sensitiv | ity Di   | stributed Analy   | sis (HPC) |                         |          |                                         |          |
| Simulation n   | ame:     | SYZ Sweep 1       |           |                         |          |                                         |          |
| _              | L        |                   |           |                         |          |                                         |          |
|                |          | DC point          |           |                         |          |                                         |          |
| Frequency F    |          |                   | N         | · · · · / C · · · · · · | Distri   |                                         | _        |
| 1 SMHz         | Freq     | Stop Freq<br>5GHz | 100       | oints / Step Size       | Linear   | bution                                  | _        |
|                |          |                   |           |                         |          |                                         |          |
| Add            | Above    | Add E             | elow      | Delete Select           | tion     | Preview                                 |          |
| S              | ave      | Loa               | ad        | Set Defaul              | lt       | Clear Default                           |          |
| Sweep Selec    |          |                   |           | ]Set FWS genera         | ation pa | arameters                               |          |
|                |          | veep              |           | Min Rise/Fall T         | īme / s  |                                         |          |
|                |          | or S: 0.5 %       | ,         | 1E-10                   |          |                                         |          |
|                |          |                   |           | 3D Solver               |          |                                         |          |
| Passivity/Ca   | ausality |                   |           | Q3D (auto-d             |          |                                         |          |
| Enforce        | e Causa  | -                 |           | HFSS (user-o            |          | f <b>regions)</b><br>hematic (do not si | imulate) |
|                | e Passiv | nty               |           | Solve reg               |          | -                                       | gure     |
|                |          |                   |           | HFSS solv               |          |                                         | guierri  |
| Export Tou     | chstone  | ® file after sin  | ulation c | ompletes                |          | Other solver                            | options  |
| File path:     | eDrive   | e - ANSYS, Inc/   | Desktop/  | siwave_boardGS          | G.s1p    | E                                       | rowse    |
|                |          |                   |           |                         |          |                                         |          |
|                |          |                   |           | Save Settin             | ngs      | Launch                                  | Close    |

- 2. In the Frequency Range Setup section, set the Start Freq to 0 Mhz.
- 3. Set the **Stop Freq** to **1 GHz**. Note that the **Min Rise/Fall Time** value changes to fit the maximum frequency (in this case, 5e-10).
- 4. Set the Num. Points to 200.
- 5. Leave the **Distribution** as **Linear**.

Slwave SYZ Analysis 4-6

- 6. In the Sweep Selection section area, ensure that Discrete Sweep is selected.
- 7. Leave any other settings as-is.

Your settings should look like the following:

| Compute SYZ-parameters                                                                               | >                                                                            |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Sweep Sensitivity Distributed Analysis (                                                             | (HPC)                                                                        |
| Simulation name: SYZ Sweep 1                                                                         | ~                                                                            |
| Compute exact DC point                                                                               |                                                                              |
| Frequency Range Setup                                                                                |                                                                              |
|                                                                                                      | Im. Points / Step Size Distribution                                          |
| 1 OMHz 1GHz 200                                                                                      | 0 Linear                                                                     |
|                                                                                                      |                                                                              |
| Add Above Add Below                                                                                  | w Delete Selection Preview                                                   |
| Save Load                                                                                            | Set Default Clear Default                                                    |
| <ul> <li>Discrete Sweep</li> <li>Interpolating Sweep</li> <li>Relative error for S: 0.5 %</li> </ul> | Set FWS generation parameters Min Rise/Fall Time / s 5E-10 3D Solver         |
| Passivity/Causality                                                                                  | Q3D (auto-detected regions)                                                  |
| Enforce Causality                                                                                    | HFSS (user-defined regions)                                                  |
| Enforce Passivity                                                                                    | AEDT regions schematic (do not simulate) Solve regions in parallel Configure |
|                                                                                                      | HFSS solver options                                                          |
| Export Touchstone® file after simulat                                                                | tion completes Other solver options                                          |
| File path: eDrive - ANSYS, Inc/Des                                                                   | ktop/siwave_boardGSG.s1p Browse                                              |
|                                                                                                      | Save Settings Launch Close                                                   |

8. Click Launch to launch the SYZ analysis.

Slwave SYZ Analysis 4-7


The **Messages** workspace updates with a progress bar showing simulation progress. When it has finished, you can view the impedance response.

### Viewing Impedance Response

To view the frequency-dependent impedance response:

 Select the Results tab. In the Slwave area, click the SYZ icon to access its drop-down menu. Select SYZ Sweep 1 > Plot Magnitude....

The S-parameter Plot window opens.



Click the **Z-parameter Plot** tab at the bottom of the window.
 The window changes to **Z-parameter Plot**.

Slwave SYZ Analysis 4-8

| atrix Entries to Plot ataset: SYZ Sweep 1  Preserve plots from other datasets                            |                                                                                                         | Z-parameters                          | <b>Ansys</b><br>2022 R |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| Plot         Row         Col           Image: U41_VCC         U41_VCC                                    | 1.00E+10                                                                                                | Z(U41_VCC,U41_V<br>SYZ Sweep 1 Z Plot | (00)                   |
| V 041_VCC 041_VCC                                                                                        | 1.00E+09                                                                                                |                                       |                        |
|                                                                                                          | 1.00E+08 -                                                                                              |                                       |                        |
|                                                                                                          | 1.00E+07                                                                                                |                                       |                        |
|                                                                                                          | 1.00E+06                                                                                                |                                       |                        |
|                                                                                                          | 9 1.00E+05                                                                                              |                                       |                        |
|                                                                                                          | a) 1.00E+05<br>1.00E+04<br>E 1.00E+04<br><sup>™</sup> 1.00E+03<br><sup>™</sup> 1.00E+03<br><sup>™</sup> |                                       |                        |
|                                                                                                          | ∰ 1.00E+03                                                                                              |                                       |                        |
| Select self terms                                                                                        | 1.00E+02                                                                                                |                                       |                        |
| Select crosstalk terms Regular expression syntax: /PORT1} Select                                         | 1.00E+01 -                                                                                              |                                       | A . 4                  |
| Regular expression syntax: {PORT1}:{PORT2}         Select           Regular expression:         Unselect | 1.00E+00                                                                                                |                                       |                        |
| port for Post-Processing                                                                                 | 1.00E-01                                                                                                |                                       | / 1                    |
|                                                                                                          |                                                                                                         |                                       |                        |

Your port should automatically be selected for plotting. If it is not, enable the check box in the **Plot** column.

#### Note:

This design only has one port defined, but it is possible to display multiple plots at once.

#### Note:

You can change many aspects of the plot, including labels, scaling, and color. Double-click anywhere within the plot window to launch the **Properties** window.

- 3. Close the report.
- 4. Click FILE > Save to save the project with the impedance result.

Slwave SYZ Analysis 4-9

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

PDF layout 4-10

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

# 5 - PSI SYZ Analysis

This section explains how to perform the following tasks:

- Generating SYZ parameters for selected power supply nets using the PSI solver
- Viewing the frequency-dependent impedance of the planes on an X-Y plot

#### Prerequisite: Defining Pin Groups and Ports

The PSI solver uses the same pin groups and port settings as the SIwave SYZ analysis.

If you have not yet completed the previous chapter (<u>Slwave SYZ Analysis</u>), please do so to set up your pin groups and ports.

### **Generating SYZ Parameters using PSI**

Next, calculate the frequency-dependent impedance response at port U41\_VCC using the 3D full-wave PSI solver.

1. Select the Simulation tab. In the PSI area, click Options.

Note:

Ensure that you click the PSI **Options** icon, as there are others.

The PSI Options window appears.

| il Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                   | ;                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| eneral Net Processing Power/Ground Nets Signal Nets Exte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rnal Environment                                                                                                                                                                                                                                                                                                                                                  |                                                       |
| <ul> <li>Local analysis (solve on local machine or single remote server)</li> <li>Number of cores to use: 32</li> <li>HPC License Type</li> <li>Pool</li> <li>Pack</li> <li>Remote server name: localhost</li> <li>Port: 31000</li> <li>Distributed analysis (HPC on multiple servers)</li> <li>Configure</li> <li>Simulation Preference</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Model Type       RMS surface roughness:       PCB         Ignore geometry smaller than       5660.2mil2         Ignore voids smaller than       3.3124mil2         Snap vertices separated by less than       0.0984252mil         Enhanced bond wire modeling       Conductor Surface Roughness         Model:       None         RMS surface roughness:       0 | Restore Default<br>Restore Default<br>Restore Default |
| Balanced Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| Temporary working folder:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| <pre><li><li><li><li></li></li></li></li></pre> // <pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//<pre>//&lt;</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre> | Browse                                                                                                                                                                                                                                                                                                                                                            |                                                       |
| Perform ERC during simulation setup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                   |                                                       |
| xport Settings Import Settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                   | DK Cancel                                             |

2. Ensure that **Local Analysis** is selected. In the box below, use the up and down arrows to change the **number of cores to use**. To use all cores, click the up arrow until you reach the maximum.

| For best performance, Ansys generally recommends at least 8, and optimally 12-<br>16 cores. | Important: |
|---------------------------------------------------------------------------------------------|------------|
|                                                                                             |            |

- 3. Leave all other options as-is, and click **OK** to exit the **PSI Options** window.
- Navigate to the Simulation tab. In the PSI section, click Compute SYZ Parameters. The Compute SYZ-parameters using PSI window opens.

PSI SYZ Analysis 5-2

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

| Compute                                                                                                              | e SYZ-parame                                              | ters using PSI             |           |                                              |        |               |        | Х |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|-----------|----------------------------------------------|--------|---------------|--------|---|
| Sweep                                                                                                                |                                                           |                            |           |                                              |        |               |        |   |
| Simulation name: PSI S-parameter Sweep ~                                                                             |                                                           |                            |           |                                              |        |               |        |   |
|                                                                                                                      | Start Freq Stop Freq Num. Points / Step Size Distribution |                            |           | ution                                        |        |               |        |   |
| 1                                                                                                                    | 1 10MHz 2GHz 100 Linear                                   |                            |           |                                              |        |               |        |   |
|                                                                                                                      | Add Above                                                 | Add B                      | elow      | Delete Select                                | ion    | Preview       |        |   |
| [                                                                                                                    | Save                                                      | Loa                        | ad        | Set Defaul                                   | t      | Clear Default |        |   |
| 0                                                                                                                    | ep Options<br>Discrete Sweep<br>Interpolating Sv          |                            |           | Set FWS genera<br>Min Rise/Fall T<br>2.5E-10 |        | ameters       |        |   |
| ]                                                                                                                    | Fast Sweep Adaptive Sar Enforce D and causa               | m <b>pling</b><br>IC point |           | Set por                                      | t type |               |        |   |
| Export Touchstone® file after simulation completes File path: eDrive - ANSYS, Inc/Desktop/siwave_boardGSG.s1p Browse |                                                           |                            |           |                                              |        |               |        |   |
| rite                                                                                                                 | e path: eDriv                                             | e - ANSTS, INC/            | Desktop/s | wave_poard65                                 | dis th |               | Browse |   |
|                                                                                                                      |                                                           |                            |           | Save Settin                                  | ngs    | Launch        | Close  |   |

- 5. Ensure the Start Freq is set to 10MHz.
- 6. Set the Stop Freq to 1GHz.
- 7. Under Sweep Options, select Interpolating Sweep (AFS), and select Fast Sweep and Adaptive Sampling. The Fast Sweep algorithm improves run time by requiring fewer samples to simulate, but uses more memory. Fast Sweep may not be used if insufficient

PSI SYZ Analysis 5-3

memory is available.

Your settings should look like the following:

| Compute SYZ-paramete                                                                                                    | ers using PSI   |          |                                            |         |               | ×     |  |
|-------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------------------------------------------|---------|---------------|-------|--|
| Sweep                                                                                                                   |                 |          |                                            |         |               |       |  |
| Simulation name:                                                                                                        | PSI S-paramete  | er Sweep |                                            |         |               | ~     |  |
| Start Freq                                                                                                              | Stop Freq       | Num. Po  | ints / Step Size                           | Distrib | oution        |       |  |
| 1 10MHz                                                                                                                 | 1GHz            | 100      |                                            | Linear  |               |       |  |
| Add Above                                                                                                               | Add B           | elow     | Delete Select                              | tion    | Preview       |       |  |
| Save                                                                                                                    | Loa             | d        | Set Defau                                  | lt      | Clear Default |       |  |
| Sweep Options                                                                                                           |                 |          | Set FWS genera<br>Min Rise/Fall T<br>5E-10 |         |               |       |  |
| <ul> <li>Interpolating Swe</li> <li>Fast Sweep</li> <li>Adaptive Sam</li> <li>Enforce DC<br/>and causali</li> </ul>     | pling<br>Cpoint |          | Set por                                    | t type. |               |       |  |
| Export Touchstone® file after simulation completes<br>File path: eDrive - ANSYS, Inc/Desktop/siwave_boardGSG.s1p Browse |                 |          |                                            |         |               |       |  |
|                                                                                                                         |                 |          | Save Settin                                | ngs     | Launch        | Close |  |

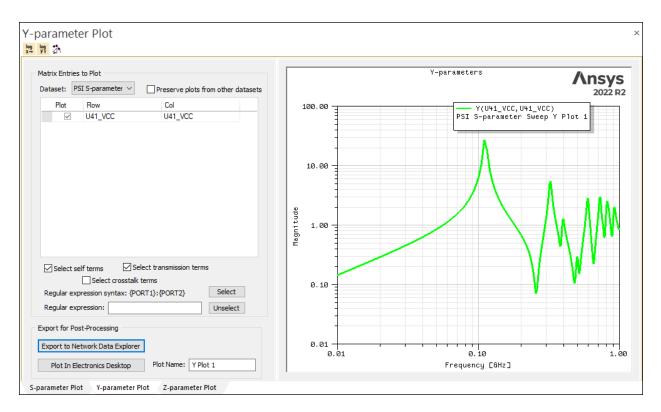
PSI SYZ Analysis 5-4

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

8. Click Launch to begin the PSI SYZ analysis.

The **Messages** workspace updates with a progress bar. When the simulation has finished, you can view the impedance response.

### **Viewing Impedance Response**


To view the frequency-dependent impedance response:

1. From the Results workspace, double-click PSI S-parameter Sweep.

#### Note:

If you have hidden your **Results** window, navigate to the results using the **Results** tab. In the PSI area, click **SYZ** > **PSI S-Parameter Sweep** > **Plot Magnitude**.

The **Y-parameter Plot** window opens.



PSI SYZ Analysis 5-5

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

| atrix Entries to Plot<br>Dataset: PSI S-parameter V Preserve plots from other datasets                                                               |                                                                    | Z-parameters                          |                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|---------------------|
| Plot         Row         Col           Image: Col         U41_VCC         U41_VCC                                                                    | 100.00                                                             | Z(U41_VCC,U41_<br>PSI S-parameter Swe | VCC)<br>ep Z Plot 1 |
|                                                                                                                                                      | 10.00                                                              |                                       | Λ.                  |
|                                                                                                                                                      | υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ<br>υ |                                       | $\mathbb{N}$        |
| Select self terms Select transmission terms<br>Select crosstalk terms<br>Regular expression syntax: {PORT1}: {PORT2}<br>Regular expression: Unselect | 0.10                                                               |                                       |                     |
| Export for Post-Processing Export to Network Data Explorer Plot In Electronics Desktop Plot Name: Z Plot 1                                           | 0.01                                                               | 0.10<br>Frequency [GHz]               | 1.                  |

2. Click the **Z-parameter Plot** tab to view the plot.

3. Click **FILE > Save** to save the project with the PSI SYZ results.

PSI SYZ Analysis 5-6

## 6 - PSI AC Current Analysis

This section explains how to perform the following tasks:

- Creating a Voltage Source
- Calculating AC currents on selected power supply nets
- Viewing current distributions as 2D plots
- Exporting total radiated power

### **Creating a Voltage Source**

AC Current analysis requires the existence of one or more sources as excitations.

Because the analysis result is a current, the effect of the changing plane impedance will be most clear if a constant voltage excitation is used.

To create a voltage source:

1. Click Tools > Generate Circuit Element on Components.

The Circuit Element Generation window appears.

- 2. In the **Positive Terminal Component** section, use the **Part Name** drop-down menu to select **MACH230\_SMSOCKETAMD** and the **Ref Des** drop-down menu to select **U41**.
- 3. In the **Reference Terminal Component** section, check the **Same as Positive Terminal** check box to select the same.
- 4. In the Circuit Element Positive Terminal section, expand the Pin Groups option and select U41\_VCC\_Group.
- 5. In the **Circuit Element Reference Terminal** section, expand the **Pin Groups** option and select **U41\_GND\_Group**.
- 6. In the Circuit Element Type section, select Voltage Source.

Your settings should look like the following:

PSI AC Current Analysis 6-1

| Positive Terminal                                                                                                                                                                                                                                                             | Component                                                                                                                                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                         |                                                                                                       |      |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------|-------------------------------------------------------------------------------------------------------|------|--|
|                                                                                                                                                                                                                                                                               | component                                                                                                                                           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Reference T    | erminal Comp            | onent                                                                                                 |      |  |
| Part Name: N                                                                                                                                                                                                                                                                  | MACH230_SMSOCKETA                                                                                                                                   | MD | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Part Name:     | MACH230_                | SMSOCKETAMD                                                                                           |      |  |
| Ref Des: L                                                                                                                                                                                                                                                                    | U41                                                                                                                                                 |    | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ref Des:       | U41                     |                                                                                                       |      |  |
|                                                                                                                                                                                                                                                                               |                                                                                                                                                     |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Same as        | Positive Termi          | inal                                                                                                  |      |  |
| Circuit Element Po                                                                                                                                                                                                                                                            | ositive Terminal                                                                                                                                    |    | Circuit Element Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Terminal       |                         | Circuit Elements                                                                                      |      |  |
| CLK_1K<br>CLK_1Z5K<br>FORCEOFI<br>GND<br>HLC_AVAI<br>HLC_CON<br>HLC_CTL<br>HLC_CCN<br>HLC_CCN<br>HLC_SOL<br>HLC_SOL<br>HLC_RR<br>HLC_SOL<br>HLC_RRC<br>HLC_SOL<br>HLC_SOL<br>HLC_SOL<br>HLC_SOL<br>TCI1_ON<br>TCI1_ON<br>TCI1_POW<br>TCI1_POW<br>TCI2_DIG1<br>Expand<br>Colla | I_GND_Group<br>_VCC_Group<br>SF<br>ILABLE<br>MPLETE<br>ATE<br>_ATE<br>_DSHED<br>_RDY<br>_RESET<br>_N<br>T<br>RT<br>P<br>PRI<br>RED<br>VER_AVAILABLE |    | Pin Groups     Pin Group | Find Pin at Lo | nce<br>Source<br>Source | Capacitors<br>Current Sources<br>Resistors<br>Ports<br>Voltage Probes<br>Voltage Sources<br>Terminals |      |  |
| Reg exp:                                                                                                                                                                                                                                                                      | X                                                                                                                                                   |    | O Terminal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Voltage        | FIODE                   | Delete                                                                                                | Edit |  |

7. Click Create.

The Set Voltage Source Properties window appears.

PSI AC Current Analysis 6-2

| Set \                                                                                     | /oltage Source Properties           |            |               | ×      |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------|------------|---------------|--------|--|--|--|--|
| Nam                                                                                       | ne: U41_VCC_VSRQ                    |            |               |        |  |  |  |  |
| • F                                                                                       | Frequency Independent<br>Parameters |            |               |        |  |  |  |  |
|                                                                                           | Magnitude:<br>Parasitic Resistance: | 1<br>1E-06 | Volts<br>Ohms |        |  |  |  |  |
|                                                                                           | Phase:                              | 0          | Degrees       |        |  |  |  |  |
| O Frequency Dependent                                                                     |                                     |            |               |        |  |  |  |  |
| Path: Browse File should contain data in <freq> <real> <imag> format</imag></real></freq> |                                     |            |               |        |  |  |  |  |
|                                                                                           |                                     | [          | OK            | Cancel |  |  |  |  |

- 8. Shorten the name to U41\_VCC\_VSRC.
- 9. Ensure that **Frequency Independent** is selected.
- 10. Ensure the **Magnitude** is set to **1 Volt**, the **Parasitic Resistance** is set to **1E-06 Ohms**, and the Phase is set to **0 Degrees**.
- 11. Click **OK** to accept the Voltage Source definition.
- 12. Click **OK** to exit the **Circuit Element Generation** window.

### **Calculating AC Currents**

The AC Currents simulation calculates surface current, and can reveal regions of high impedance that may occur due to antipads, cutouts, or discontinuities in ground planes.

To calculate the surface current flowing on the VCC and GND planes:

1. Select the **Simulation** tab. In the **PSI** area, click **Compute AC Currents**.

The Compute AC currents using PSI window appears.

PSI AC Current Analysis 6-3

| Compute AC curre                                          | nts using PSI                 |                           |              | ×          |  |  |  |  |
|-----------------------------------------------------------|-------------------------------|---------------------------|--------------|------------|--|--|--|--|
| Simulation name:                                          | Simulation name: PSI AC Sweep |                           |              |            |  |  |  |  |
| Excitations                                               |                               |                           |              |            |  |  |  |  |
| <ul> <li>Use frequency</li> <li>Use sources de</li> </ul> |                               |                           | n project    |            |  |  |  |  |
|                                                           | Brows                         |                           |              |            |  |  |  |  |
| ✓ Interpolate                                             | e spectrum at mis             | sing frequency            | points       |            |  |  |  |  |
|                                                           |                               |                           |              |            |  |  |  |  |
| Frequency Range                                           | Setup                         |                           |              |            |  |  |  |  |
| Start Freq                                                | g Stop Freq                   | Num. Points               | Distribution |            |  |  |  |  |
| 1 10MHz                                                   | 2GHz                          | 100 Linear                |              |            |  |  |  |  |
| Add Above                                                 | Add Below                     | dd Below Delete Selection |              | review     |  |  |  |  |
| Save                                                      | Load                          | Set Default               |              | ar Default |  |  |  |  |
|                                                           |                               |                           |              |            |  |  |  |  |

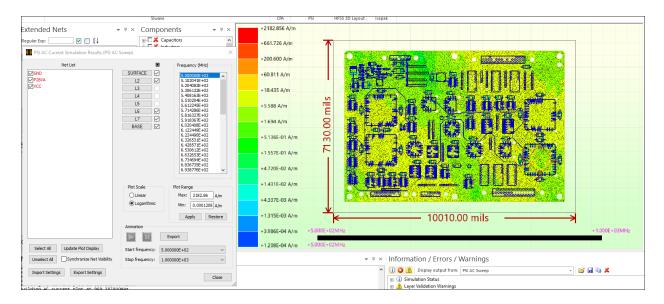
- 2. In the Excitations area, ensure that Use sources defined in project is selected.
- 3. Set the Start Freq to 500 MHz.
- 4. Set the **Stop Freq** to **1 GHz**.
- 5. Set the **Num. Points/Step Size** to **50**. Please note that for each frequency point, a number of data files are written to the disk. The available disk space must be considered before specifying too many frequency points for simulation.
- 6. Set the **Distribution** to **Linear**.

Your settings should look like the following:

PSI AC Current Analysis 6-4

|   | Start Freq | Stop Freq | Num. Points | Distribution |  |
|---|------------|-----------|-------------|--------------|--|
| 1 | 500MHz     | 1GHz      | 50          | Linear       |  |
|   |            |           |             |              |  |
|   |            |           |             |              |  |
|   |            |           |             |              |  |

7. Click Launch to begin the PSI AC current analysis.


The **Messages** workspace updates to display a progress bar. When the analysis has completed, you can view AC currents as 2D plots.

### **Viewing AC Currents as 2D Plots**

To view the results plot:

1. Select the **Results** tab. In the **PSI** area, click **AC Currents** > **PSI AC Sweep** > **Plot Currents**.

The **Modeling** workspace updates to show the plot, and the **PSI AC Current Simulation Results** window appears:



PSI AC Current Analysis 6-5

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

2. In the Layer Toggle column ( $\square$ ), clear the check boxes for every layer except L2.

|         | × |
|---------|---|
| SURFACE |   |
| L2      |   |
| L3      |   |
| L4      |   |
| L5      |   |
| L6      |   |
| L7      |   |
| BASE    |   |

- 3. In the **Frequency** list, click each frequency to view AC currents at that frequency.
- 4. Options in the **Animation** area allow you to view an animation of the plot at all frequencies, using the Play and Pause buttons.

### **Exporting Total Radiated Power**

After running the AC current analysis, the total power radiated from the PCB can be exported to a \*.csv file.

1. Click the **Results** tab. In the **PSI** section, click **AC Currents** > **PSI AC Sweep** > **Export** total radiated power.

2. Name and save the .csv file to any location.

PSI AC Current Analysis 6-7

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

3. View the saved file in any text editor.

PSI AC Current Analysis 6-8

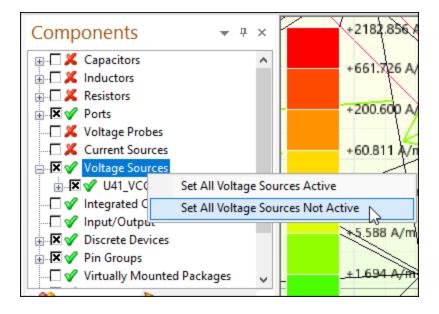
| 1  | "Freq [Hz]", "RadiatedPower [W]"      |
|----|---------------------------------------|
| 2  | 50000000,0.0564708489195              |
| 3  | 510204081.633,0.0316060131002         |
| 4  | 520408163.265,0.0226131402443         |
| 5  |                                       |
| 6  |                                       |
| 7  | 551020408.163,0.0406286155911         |
| 8  | 561224489.796,0.0626586399411         |
| 9  | 571428571.429,0.113268233374          |
| 10 |                                       |
| 11 | 591836734.694,0.47488819016           |
| 12 |                                       |
| 13 | 612244897.959,0.128254210618          |
| 14 | 622448979.592,0.0745450042714         |
| 15 | 632653061.224,0.0544804305976         |
| 16 |                                       |
| 17 |                                       |
| 18 | 663265306.122,0.0519442862736         |
| 19 | · · · · · · · · · · · · · · · · · · · |
| 20 | 683673469.388,0.0837617742927         |
| 21 | · · · · · · · · · · · · · · · · · · · |
| 22 | 704081632.653,0.208039800654          |
| 23 | 714285714.286,0.384086567773          |
| 24 | 724489795.918,0.506413955867          |
| 25 | 734693877.551,0.297220871799          |
| 26 | 744897959.184,0.164312436241          |
| 27 | 755102040.816,0.135141364912          |
| 28 | 765306122.449,0.105237767082          |
| 29 | 775510204.082,0.0892679461732         |
| 30 | 785714285.714,0.114190590754          |
| 31 | 795918367.347,0.201450244492          |
| 32 | 806122448.98,0.360715624804           |
| 33 | 816326530.612,0.357135076406          |
| 34 | 826530612.245,0.250732149771          |
| 35 | 836734693.878,0.175404953492          |
| 36 | 846938775.51,0.112408788204           |
| 37 | 857142857.143,0.0831272227951         |
| 38 |                                       |
| 39 | 877551020.408,0.0894823899409         |
| 40 | 887755102.041,0.129584586183          |
| 41 | 897959183.673,0.213723150777          |
| 42 | 908163265.306,0.297288757457          |
| 43 | 918367346.939,0.243862625862          |
| 44 | 928571428.571,0.150671654475          |
| 45 | 938775510.204,0.0990916886915         |
| 46 | 948979591.837,0.0786709032629         |
| 47 | 959183673.469,0.0663596901453         |
| 48 | 969387755.102,0.054406081455          |
| 49 | 979591836.735,0.0496260801285         |
| 50 | 080705018 367 0 055217605505          |

PSI AC Current Analysis 6-9

4. In Slwave, click **FILE > Save** to save the project with the AC Current analysis result.

PSI AC Current Analysis 6-10

# 7 - Frequency Sweep of Voltages


This section explains how to perform the following tasks:

- Disabling Voltage Sources
- Creating a Current Source on a component
- Placing a Voltage Probe in a region of interest
- Calculating a Frequency Sweep of Voltages
- Viewing a Voltage Probe plot

### **Disabling Voltage Sources**

The voltage source used in the AC Current analysis should be disabled, so that it does not interfere with the voltage frequency sweep.

- 1. In the Components workspace, ensure that Voltage Sources is selected.
- 2. Right-click on Voltage Sources and select Set All Voltage Sources Not Active.



The green check mark next to Voltage Sources becomes a red X.

U41\_VCC\_VSRC

### **Creating a Current Source on a Component**

The Frequency Sweep analysis requires one or more sources as excitations.

Frequency Sweep of Voltages 7-1

To define a Current Source:

1. Click Tools > Generate Circuit Element on Components.

The Circuit Element Generation window appears.

- 2. In the **Positive Terminal Component** section, use the **Part Name** drop-down menu to select **MACH230\_SMSOCKETAMD** and the **Ref Des** drop-down menu to select **U41**.
- 3. In the Reference Terminal Component section, select Same as Positive Terminal.
- 4. In the Circuit Element Positive Terminal section, expand Pin Groups and select U41\_ VCC\_Group.
- 5. In the Circuit Element Reference Terminal section, expand Pin Groups and select U41\_ GND\_Group.
- 6. For the Circuit Element Type, select Current Source.

Your settings should look like the following:

| Circuit Element Generation Dialog                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                             |                                                                                         |                                                                                             | -  |      | ×      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|------|--------|
| Positive Terminal Component                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                             | Reference Terminal Compo                                                                | nent                                                                                        |    |      |        |
| Part Name: MACH230 SMSOCKETAMD                                                                                                                                                                                                                                                                                                                                         | ~                                                                                                                                                                                                                                                                                                                           |                                                                                         | MSOCKETAMD                                                                                  |    |      | $\sim$ |
| Ref Des: U41                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                             | Ref Des: U41                                                                            |                                                                                             |    |      | ~      |
| UT UT                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             | Same as Positive Termin                                                                 | al                                                                                          |    |      |        |
|                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                             | Joane as rosave remain                                                                  |                                                                                             |    |      |        |
| Circuit Element Positive Terminal                                                                                                                                                                                                                                                                                                                                      | Circuit Element Reference                                                                                                                                                                                                                                                                                                   | Terminal                                                                                | Circuit Elements                                                                            |    |      |        |
| Pin Groups Pin Groups P: U41 GND Group CLK_14 GND Group CLK_14 CLK_125K FORCEOFF GND HLC_AVAILABLE HLC_COMPLETE HLC_CTL HLC_CTL HLC_SOLATE HLC_ISOLATE HLC_RRC_RDY HLC_RRC_RDY HLC_START HLC_START HLC_STOP TCI1_LS TCI1_ON_RED TCI1_POWER_AVAILABLE TCI1_POWER_ISOLATE TCI2_DIG1_DN_GWITCH TCN_DIG1_DN_GWITCH TCN_DIG1_DN_GWITCH Expand Collapse Find Pin at Location | Pin Groups  Pin Groups  Pin Groups  Put1_GND_G  Put1_VCC_Gr  GND  FORCEOFF GND  HLC_AVAILABLE HLC_CTL HLC_CTL HLC_ERR HLC_SOLATE HLC_SOLATE HLC_RRC_RDY HLC_RRC_RESET HLC_RST_N HLC_ST_N HLC_ST_N HIC_SHIFT  Expand Collapse  Use nearest pin as ref Group pins within the Circuit Element Type Capacitor Inductor Database | Find Pin at Location<br>Ference pin<br>reference distance<br>O Port<br>O Current Source | Current Sources<br>Inductors<br>Resistors<br>Voltage Probes<br>Voltage Sources<br>Terminals |    |      |        |
| Reg Expression syntax {Net name}:{Pin name}<br>Reg exp:                                                                                                                                                                                                                                                                                                                | O Resistor<br>O S-Param Cir Elem<br>O Terminal                                                                                                                                                                                                                                                                              | <ul> <li>Voltage Source</li> <li>Voltage Probe</li> </ul>                               | Delete                                                                                      |    | Edit |        |
|                                                                                                                                                                                                                                                                                                                                                                        | Naming Convention                                                                                                                                                                                                                                                                                                           | Create                                                                                  |                                                                                             | OK | Car  | ncel   |

7. Click Create.

The Set Current Source Properties window appears.

Frequency Sweep of Voltages 7-3

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

| Set (                 | Current Source Properties                                             |               |              | ×      |  |  |  |
|-----------------------|-----------------------------------------------------------------------|---------------|--------------|--------|--|--|--|
| Nam                   | ne: U41_VCC_ISRC                                                      |               |              |        |  |  |  |
| ۹                     | Frequency Independent<br>Parameters                                   |               |              |        |  |  |  |
|                       | Magnitude:<br>Parasitic Resistance:                                   | 1E-5<br>5E+07 | Amps<br>Ohms |        |  |  |  |
|                       | Phase:                                                                | 0             | Degrees      |        |  |  |  |
| O Frequency Dependent |                                                                       |               |              |        |  |  |  |
|                       | Path: Browse                                                          |               |              |        |  |  |  |
|                       | File should contain data in <freq> <real> <imag></imag></real></freq> |               |              |        |  |  |  |
|                       |                                                                       | 0             | OK           | Cancel |  |  |  |

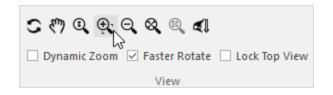
- 8. Shorten the name to U41\_VCC\_ISRC.
- 9. Set the Frequency Independent Magnitude to 1E-5 Amps.
- 10. Ensure that the Parasitic Resistance is set to 5E+07 Ohms.
- 11. Ensure that the **Phase** is set to **0** Degrees.
- 12. Click **OK** to accept the current source definition.
- 13. Click **OK** to close the **Circuit Element Generation** window.

### **Creating a Voltage Probe**

The problem of induced ripple voltage in the Power Distribution Network (PDN) can be investigated by measuring the voltage between the VCC and GND nets, using a voltage probe placed at a location of interest on the PCB.

You will place a probe at the lower-right corner of the PCB, where U41 is located. The X- and Y- coordinates for the probe are X=8500mil, Y=0mil.

Perform the following steps:


1. Make sure the **Units** field in the menu bar is set to mils.

| x: | 8500 | y: | 0 | z: |  | dx: |  | dy: |  | Units: | mils 🔻 |  |
|----|------|----|---|----|--|-----|--|-----|--|--------|--------|--|
|----|------|----|---|----|--|-----|--|-----|--|--------|--------|--|

Frequency Sweep of Voltages 7-4

Ansys Electromagnetics Suite 2022 R2 - © ANSYS, Inc. All rights reserved. - Contains proprietary and confidential

2. Select the **View** tab. Use the **Zoom In** icon (or your mouse wheel) to enlarge the lower-right corner of the PCB.



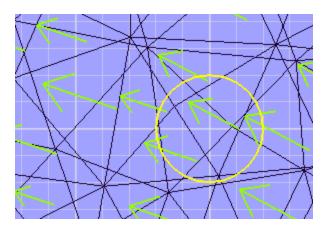
- 3. Select the **Home** tab.
- 4. In the Circuit Elements area, select the Add Voltage Probe icon (<sup>1</sup>U<sup>1</sup>).

The cursor changes to a small bullseye.

- 5. Use the location indicators at the bottom-right of the screen to position your cursor at x: 8500 mils, y: 0 mils.
- 6. Click the left mouse button twice, slowly each time. The first click locates the positive terminal, the second click is for the reference terminal. The terminals are located in the same position since these probes measure the voltage between two planes.

|         |     |   | _       | -   |   |
|---------|-----|---|---------|-----|---|
| Layer   | Net | ^ | Layer   | Net | ^ |
| SURFACE |     |   | SURFACE |     | _ |
| L2      | GND |   | L2      | GND |   |
| 🔲 L3    |     |   | L3      |     |   |
| L4      |     |   | L4      |     |   |
| L5      |     |   | L5      |     |   |
| L6      |     | _ | L6      |     |   |
| L7      | VCC | ~ | L7      | VCC | ~ |
| <       |     | > | <       |     | > |

The Select layers for voltage probe terminals window appears.


- 7. For the Positive Terminal Resides on Layer, select L7 (VCC).
- 8. For the Negative Terminal Resides on Layer, select L2 (GND).
- Click OK to close the Select layers for voltage probe terminals window.
   The Edit Probe Name window appears.

Frequency Sweep of Voltages 7-5

| Edit pro | be name |    |        | × |
|----------|---------|----|--------|---|
| Name:    | VPROBE1 |    |        |   |
|          |         | ОК | Cancel |   |

10. Enter **VPROBE1**, and click **OK**.

The voltage probe (a yellow circle in the following figure) appears.



### **Running a Frequency Sweep**

Frequency sweep calculates the voltages across the VCC and GND planes at the locations of the probe. The Slwave frequency sweep shows how the current drawn by a device can lead to voltage ripple in the power distribution system.

Run the frequency sweep analysis:

1. Click Simulation > Compute Frequency Sweeps...

The Compute Frequency Sweep window appears.

- 2. For excitations, select Use sources defined in project.
- 3. Set the Start Freq to 500MHz.
- 4. Set the **Stop Freq** to **1GHz**.
- 5. Set the Num. Points to 200.
- 6. Set the **Distribution** to **Linear**.
- 7. Set the Voltage Surface Plot Options to plot voltage difference between layers L2 and L7.

Your settings should look like the following:

Frequency Sweep of Voltages 7-6

| Compute                                                                                                                            | Frequency                                          | Sweep       |               |              | ×           |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------|---------------|--------------|-------------|--|--|--|
| Simulation                                                                                                                         | name:                                              | Frequency S | Sweep 1       |              | ~           |  |  |  |
| Excitatio                                                                                                                          | ons                                                |             |               |              |             |  |  |  |
|                                                                                                                                    | sources defir<br>sources defir                     |             |               |              |             |  |  |  |
|                                                                                                                                    |                                                    |             | Browse        |              |             |  |  |  |
|                                                                                                                                    | ✓ Interpolate spectrum at missing frequency points |             |               |              |             |  |  |  |
| Frequer                                                                                                                            | ncy Range Se                                       | tup         |               |              |             |  |  |  |
|                                                                                                                                    | Start Freq                                         | Stop Freq   | Num. Points   | Distribution |             |  |  |  |
| 1 50                                                                                                                               | 00MHz                                              | 1GHz        | 200           | Linear       |             |  |  |  |
| Add                                                                                                                                | Add Above A                                        |             | Delete Selec  | tion         | Preview     |  |  |  |
| S                                                                                                                                  | Save                                               |             | Set Default 0 |              | ear Default |  |  |  |
| Voltage Surface Plot Options<br>Plot voltage difference between planes<br>Layer L2 	v and<br>Layer L7 	v [reference layer (ground) |                                                    |             |               |              |             |  |  |  |
| Other sol                                                                                                                          | ver options                                        | Save Se     | ettings       | Launch       | Close       |  |  |  |

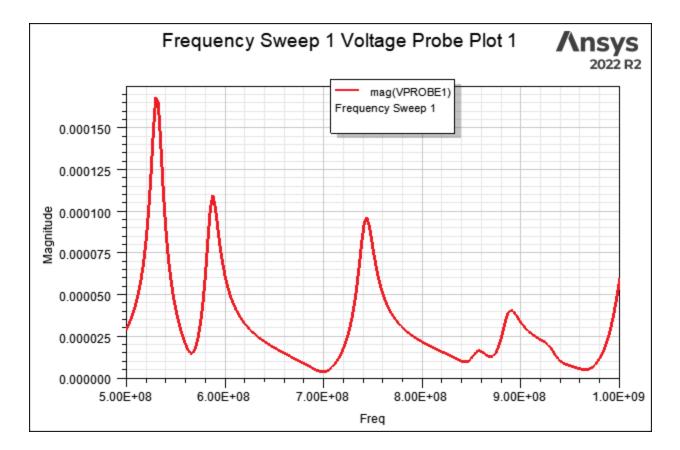
8. Click Launch to begin the simulation.

The **Messages** workspace displays a progress bar that lets you know when the simulation is complete.

### **Plotting Probe Voltage**

To plot the voltages at the probe locations:

Frequency Sweep of Voltages 7-7


- 1. Select the **Results** tab.
- Click Frequency Sweep > Frequency Sweep 1 Results > Plot Probe Voltages. The Voltage Probe Plot Generation window appears.

| Voltage Probe Plot Generat      | ion (Frequency Sweep 1)                           | ×  |
|---------------------------------|---------------------------------------------------|----|
| Plot name: Voltage Probe Plot 1 |                                                   |    |
| Plot Options                    | Voltage Probes to Plot                            |    |
| Plot magnitude                  | Plot Probe                                        |    |
| ○ Plot phase                    | VPROBE1                                           |    |
|                                 |                                                   |    |
|                                 |                                                   |    |
|                                 |                                                   |    |
|                                 |                                                   |    |
|                                 |                                                   |    |
|                                 |                                                   |    |
|                                 | Regular expression syntax: {PORT1}:{PORT2} Select |    |
|                                 | Regular expression: Unselect                      | í. |
|                                 |                                                   |    |
|                                 | Create Plot Close                                 |    |
|                                 |                                                   | _  |

3. Ensure that **Plot magnitude** and **VPROBE1** are selected.

#### 4. Click Create Plot.

Ansys Electronics Desktop launches. The **Reporter** window opens, displaying the plot of magnitude versus frequency.



The peaks in the voltage correspond to resonant mode 4, mode 8, and mode 10.